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We present a derivation of the degree of polarization for incoherent Thomson scattering (TS) using

Mueller matrix formalism. An exact analytic solution is obtained for spectrum-integrated matrix

elements. The solution is valid for the full range of incident polarizations, scattering angles, and

electron thermal motion from non-relativistic to ultra-relativistic. It is based on a newly developed

theoretical model, a finite transit time (FTT) correction to previous theoretical work on TS polar-

ization. The Mueller matrix elements are substantially different from previous calculations without

the FTT correction, even to the lowest linear order in Te=mec2 � 1. Mathematically, the derivation

is a unique example of fully analytical integration of the 3D scattering operator over a relativistic

Maxwellian distribution function; experimentally, the results have application to the use of the

polarization properties of Thomson scattered light as a method of electron temperature measure-

ment. The results can also be used as a reliable tool for benchmarking and verification of numerical

codes for frequency resolved properties of TS polarization. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4948488]

I. INTRODUCTION

Incoherent Thomson scattering (TS) is routinely used

for electron temperature measurement, with Te proportional

to the square of the spectral width of the scattered light.1

Instead of the frequency spectrum broadening, we analyze

here the polarization properties of the TS radiation as a

method of electron temperature measurement.

The term “depolarization” has been widely used in the

TS literature for many years. Indeed, the scattering process

changes the polarization of the light, an effect that becomes

significant in high-temperature plasmas and is typically

described by the relativistic depolarization factor q (see

Refs. 1–4). This factor quantifies the reduction of scattered

spectral intensity when the scattered light collection system

selects for a specific orientation of linear polarization and is

due to relativistic terms / v2
Te=c2 in the polarization part of

the scattering operator.

Although this reduction is referred to as depolarization,

this usage differs from the use of depolarization in the pres-

ent paper. Indeed, the aforementioned reduction of intensity

takes place even for scattering on a single moving electron.

In this case, the scattered electromagnetic wave has a

Doppler-shifted frequency but still remains monochromatic

and completely polarized. The transition from fully polarized

incident light to partially polarized TS radiation is caused by

the superposition effect of a large number of randomly mov-

ing electrons. It results in broadening of the frequency spec-

trum and also renders the scattered radiation partially

polarized even though the incident light is fully polarized.

We focus our attention on this mechanism of loss of polar-

ization in the process of incoherent TS.

The loss of polarization is quantified by the degree of
polarization P, or equivalently by the degree of depolarization

D ¼ 1� P. The possibility of determining the plasma electron

temperature by measuring the degree of depolarization was

suggested as early as 1968 in Ref. 5 and more recently in

Ref. 6. If the degree of polarization dependence on electron

temperature is accurately known from theory, the accuracy of

such a diagnostic could potentially exceed that of the conven-

tional spectrum-based TS method. First order in Te=mec2

effects were analyzed theoretically in Refs. 5, 7, and 8. Thus

motivated, we revisited this problem to analyze whether polar-

ization effects may be suitable for application to advanced TS

diagnostics on ITER.

The most complete description of the polarization is

based on the Mueller matrix formalism. The 4 � 4 Mueller

matrix links the Stokes vectors of the incident and scattered

light. Our previous publications9,10 were mostly devoted to

parametric studies of the degree of polarization. Possible

implementations of a polarization-based Te diagnostic were

discussed in Ref. 11. In all these papers, expressions for the

Mueller matrix elements were presented without derivation.

The purpose of the present paper is, first, to develop a self-

consistent theoretical model of the TS polarization and, sec-

ond, to describe the derivation of the exact relativistic

expressions for the Mueller matrix elements. The first calcu-

lation of the Mueller matrix for Thomson scattering was per-

formed in Ref. 8 in 2000 and limited to first order terms

in Te=mec2 � 1. In contrast to Ref. 8, we present here an

advanced Mueller matrix theory that results in matrix ele-

ments obtained from exact analytical calculations. They are

expressed in a compact form after analytical integration of a

three-dimensional, relativistic scattering operator over a rela-

tivistic Maxwellian distribution function and universally

valid for the full range of electron thermal motion from non-

relativistic to ultra-relativistic. Low temperature expansions
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at Te=mec2 � 1 are not in agreement with Ref. 8 due to the

incorrect form of the scattering operator chosen as the start-

ing point of the model.8 The existence of the analytical solu-

tion is of a principal importance for optimization of the

polarization-based TS diagnostic setup over multidimen-

sional parameter space of the problem.10,11

Following the general approach accepted for incoher-

ent TS calculations, we consider, first, polarization proper-

ties for scattering on a single electron. They are described

by Lienard-Wiechert solution for the scattered electric

field reemitted by an electron moving along the unper-

turbed trajectory with arbitrary relativistic velocity and

oscillating in the field of the incident monochromatic

wave. The starting point of the Mueller matrix formalism

is a transformation of the time averaging in the definition

of the Stokes vector components to integration over the

spectrum. The resulting expressions are linked with the

frequency-integrated products of the Fourier components

of the truncated fields in Appendix A 2. They allow us to

define in Sec. II a set of three Mueller matrices and the

corresponding Stokes vectors (auxiliary, spectral, and fre-

quency integrated) describing the change of polarization

in the process of scattering on an individual electron mov-

ing in unbounded space.

The zero-component of the spectral Stokes vector corre-

sponds to the spectral intensity from a single electron. Our

result for this component is consistent with the expression

derived in the first part of Ref. 12 devoted to the infinite scatter-

ing volume (infinite transit time, ITT) case. It yields the spec-

tral intensity on the detector PðsingleÞ / dðx� xdÞ=ð1� bsÞ6
scattered by a single electron moving with the velocity b ¼
v=c in the infinite scattering volume, where bs is the projection

of b on the scattered wave direction and xd is the Doppler

shifted frequency of the wave. The key dependences of PðsingleÞ

on x and bs are derived in Sec. II B and Appendix A 3. They

are also identical to Equation (7.2.19) in Ref. 2 and Equation

(4.35) in Ref. 14. According to the terminology of Ref. 2, the

spectral intensity PðsingleÞ represents the time-at-observer power

from a single electron.

The result of Ref. 12 was declared in Ref. 13 (1980) to

be incorrect due to improper handling of the square of a d-

function in the spectral power equation. The arguments of

Ref. 13 have been reviewed recently in a detailed tutorial ar-

ticle.14 Performing our calculations, we found that the square

of a d-function was properly treated in mathematical trans-

formations in the first ITT part of Ref. 12. The inconsistency

between Ref. 13 and Ref. 12 originates not from a mathemat-

ical mistake in Ref. 12 but from the erroneous comparison of

the time-at-particle power treated in Ref. 13 with the time-
at-observer power analyzed in Refs. 2, 12, and 14.

Using the single electron Mueller matrices obtained in

Sec. II allows us to account for the effect of many particles

in Sec. III. The combined effect of many electrons was origi-

nally expressed in Ref. 12 by two different weighting factors

used for averaging over Maxwellian distribution function: by

the weighting factor PITT / ð1� bsÞ�6
presented in the first

ITT part of Ref. 12 and another finite transit time (FTT) scal-

ing, PFTT / ð1� bsÞ�5
, derived in the second part of Ref. 12

devoted to the finite scattering volume (finite transit time,

FTT) regime. The ITT scaling corresponds to the instantane-

ous spectral intensity PðsingleÞ from a single electron multi-

plied by the number of particles stationary residing in the

scattering volume. This operation is invalid in the case of fi-

nite scattering volume due to the interruption of radiation

caused by the boundaries of the scattering zone. The FTT

scaling has an additional factor ð1� bsÞ compared to the

ITT expression. This factor takes into account modification

of the mean power on the detector due to the impulsive char-

acter of the scattered radiation. The FTT form of the weight-

ing factor is generally accepted in all present-day relativistic

treatments of Thomson scattered radiation. We use this

expression for our polarization calculations contrary to Ref.

8, where the incorrect ITT weighting factor was used for

averaging over Maxwellian distribution function.

The second important improvement is the optimal

choice of reference frame for averaging over velocity space.

This allows us to perform analytical integration of the

Mueller matrix elements over relativistic Maxwellian distri-

bution function in Sec. IV. The derivation yields an exact

relativistic expression for the degree of depolarization which

spans the full range of incident polarizations, scattering

angles, and electron thermal motion from non-relativistic to

ultra-relativistic. Both of these improvements differ signifi-

cantly from Ref. 8, where only an approximate solution, lim-

ited by linear in Te=mec2 corrections to the cold plasma case,

was calculated on the basis of the incorrect ITT weighting

factor. Our technique of exact integration can also be for-

mally applied to the ITT weighting factor used in Ref. 8.

This also yields Mueller matrix elements valid at all temper-

atures. Their low temperature limits verify the first-order

expansions in Te obtained in Ref. 8 for the ITT model and

increases confidence in both the first-order calculations8 and

the correctness of our scheme of exact analytical integration.

The corresponding mathematical transformations and some

comments about ITT and FTT effects are presented in

Appendix B.

II. THOMSON SCATTERING FROM A SINGLE
ELECTRON

The polarization properties of a non-monochromatic

plane wave are characterized by the complex coherency ma-

trix J. The matrix is constructed from time averaged quad-

ratic combinations of the field components (see Ref. 15). It is

represented, in general, by four real quantities which can be

equivalently expressed by four Stokes parameters or the 4-

component Stokes vector S

J ¼
ExE?x ExE?y
EyE?x EyE?y

 !
¼ 1

2

S0 þ S1 S2 þ iS3

S2 � iS3 S0 � S1

� �
: (1)

The S0 component is a measure of the total intensity I of the

wave, and the remaining components describe the polarization

properties. For a purely monochromatic, fully polarized incident

wave, the amplitudes and the phases of Ex and Ey are independ-

ent of time. In this case det jJj ¼ 0, leading to the relationship

S2
0 ¼ S2

1 þ S2
2 þ S2

3. Correspondingly, the state of polarization

of fully polarized incident laser light used in TS measurements
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and the evolution of the polarization of monochromatic laser

light used for interferometric/polarimetric diagnostics are

described by the reduced three-component unit Stokes vec-

tor Si=S0 ði ¼ 1; 2; 3Þ. This unit vector is characterized by

the azimuth (orientation angle) of the polarization ellipse

0 � w < p and the ellipticity angle v ¼ 6arctanðb2=b1Þ
determined by the ratio of the minor and the major

semi-axis (�p=4 < v � p=4). We use in this paper the

four-component Stokes vector for fully polarized mono-

chromatic incident laser light with arbitrary elliptical polar-

ization given in Equation (5) (see Appendix A 1)

SðiÞ ¼ E2
0ð1; cos 2w cos 2v; sin 2w cos 2v; sin 2vÞ: (2)

A fully unpolarized wave (natural light) is characterized

by S1 ¼ S2 ¼ S3 ¼ 0. Any partially polarized wave can be

decomposed into completely unpolarized and polarized por-

tions. As they are statistically independent, the 4-component

Stokes vector of the mixture is a sum of the respective vec-

tors of the separate waves. Defining the unpolarized and

polarized parts as SðunpolÞ ¼ ðS0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1 þ S2
2 þ S2

3

p
; 0; 0; 0Þ

and SðpolÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1 þ S2
2 þ S2

3

p
; S1; S2; S3Þ yields the degrees

of polarization/ depolarization of the original wave of inten-

sity S0
15

P ¼ Ipol

Itot
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1 þ S2
2 þ S2

3

p
S0

; D ¼ 1� P: (3)

The analysis of the degree of polarization for Thomson scat-

tering is based on a derivation of the 4 � 4 Mueller matrix

that expresses the Stokes vector of the scattered radiation in

terms of the Stokes vector of fully polarized incident laser

light. The problem is considered within the scope of classical

electrodynamics, where the scattering of the waves is treated

as a reemission of electromagnetic radiation by free electrons

oscillating in electric and magnetic fields of the incident

laser light.

A. Electric field from a single electron

Using the equation for the Lienard-Wiechert potentials,

the scattered electric field in the far-zone Esðr; tÞ is

expressed by a 2� 2 matrix P̂ transforming the incident

field to the scattered field in the process of interaction with a

single electron moving with velocity v. These calculations

are presented in Appendix A 3. The electric fields of the inci-

dent and scattered waves are projected, respectively, on the

unit vectors ðex; tiÞ and ðex; tsÞ which are orthogonal to the

wave propagation directions i ¼ ki=jkij and s ¼ ks=jksj

Ei ¼ Eixex þ Eitti; Es ¼ Esxex þ Estts;

ti ¼ i� ex ¼
i cos h� s

sin h
; ts ¼ s� ex ¼

i� s cos h
sin h

; (4)

where h is the scattering angle in the scattering plane deter-

mined by the vectors i and s while the unit vector ex ¼
½i� s�= sin h is normal to the scattering plane. The fully

polarized incident monochromatic wave is assumed to have

an arbitrary elliptical polarization, with semi-major axis b1

and semi-minor axis b2, and complex amplitude Ei

Eiðr0; t0Þ ¼ Ei expðiki � r0 � ixit
0Þ;

Ei ¼ E0ðb1e0x þ ib2e0yÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þ b2
2

q
;

(5)

where E0 is the magnitude of the incident wave. The two

mutually perpendicular unit vectors e0x and e0y are orthogonal

to the incident wave propagation direction i. Their position

with respect to the scattering plane is arbitrary and determined

by the azimuth w (orientation angle) of the polarization ellipse

(cos w ¼ ex � e0x). The Stokes vector of the incident wave is

calculated in the incident wave reference frame (ex; ti; i) while

the Stokes vector of the scattered wave is defined in Equations

(A1) in the scattering wave reference frame (ex; ts; s).

The prime symbol for variables t0 and r0 is introduced to

indicate the retarded time and electron position inside the

scattering volume while the variables t and r are related to the

time at the remote detector (observer) localized at the position

r. The radius vector r connects the origin of the coordinate

system chosen somewhere in the center of the scattering

volume with the point of observation. At large enough r, one

can approximate the distance between an individual electron

at the position r0ðt0Þ and the point of observation as

Rðt0Þ ’ r � r0ðt0Þ � s. The fields at the point of observation are

determined by the position of the electron at the earlier time t0

such that t ¼ t0 þ Rðt0Þ=c. Differentiating this relation over t
and t0 yields the relationship for the time interval Dt between

arrival at the observer of signals which were emitted by the

electron over an interval Dt0 in the scattering volume

Dt ¼ ð1� bsÞDt0; (6)

where the factor bs ¼ v � s=c describes the effect of electron

thermal motion. The change of the interval is caused by both

the effect of retardation and electron motion toward or away

from the observer. This time difference leads to different

mean powers emitted by the electron and received by the ob-

server. If the averaged scattered power at the observer is

PðobserverÞ then the energy received by the observer during the

time interval Dt is PðobserverÞDt. Since the same energy is

emitted by the electron during the time-at-particle interval

Dt0, the average time-at-particle power (see Ref. 2) is differ-

ent from the time-at-observer power

PðparticleÞ ¼ PðobserverÞð1� bsÞ: (7)

Instead of using the time-dependent scattered field

Esðr; tÞ, we follow the standard approach and operate with

the Fourier transformed components of the truncated electric

field EðTÞs ðr;xÞ. The truncated scattered electric field is

defined in Appendix A 2. The superscript T indicates para-

metric dependence on the width T of the truncation interval.

Instead of the superscript, the dependence on T will some-

times be shown in the arguments of the function. The use of

the truncation method is a substantial element of our

approach. Truncation resolves the d-function singularity in

the Fourier transformed Doppler shifted monochromatic

electric field of the radiation scattered by a single electron.

This allows us to calculate quadratic field combinations

without the uncertainty caused by the ambiguous treatment

of the square of a d-function.13
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The linear relationship between the Fourier image of the

truncated scattered field and the amplitude Ei of the incident

field is described by the matrix P̂ and amplitude factor

f ðTÞðx; bÞ

EðTÞs ðxÞ ¼ f ðTÞðx; bÞP̂ � Ei: (8)

The spectral characteristics x and T and spatial dependence on

r are included in f ðTÞðx; bÞ defined in (A22) while the matrix

P̂ is presented in (A18). The explicit form of matrix P̂ is

obtained by substituting the electric field projections (4) in

(A18) and the corresponding transformations (A24) and (A25)

E Tð Þ
sx xð Þ

E Tð Þ
st xð Þ

 !
¼ f Tð Þ x; bð Þ

a b

�b c

 !
Eix

Eit

 !
;

c ¼ bi þ bs þ bibs � cos h� bi þ bsð Þ2

1þ cos h
;

a ¼ � 1� bið Þ 1� bsð Þ þ b2
x 1� cos hð Þ;

b ¼ bx 1þ cos h� bi � bsð Þtan
h
2
:

(9)

The matrix form (9) consists of three elements a, b, and c
and describes the transformation of the polarization. These

three elements are functions of the velocity components

bi ¼ b � i; bs ¼ b � s, and bx ¼ b � ex and the scattering angle

h where b ¼ v=c.

B. Mueller matrix formalism

The matrix representation (9) allows us to construct

quadratic combinations of the scattered field components

needed for calculation of the Stokes vector of the scattered

radiation SðsÞ. The components of SðsÞ are defined by time

averaged products (A1) of the electric field components

EsxðtÞ and EstðtÞ. The products of the fields and quadratic

combinations of their Fourier images E
ðTÞ
sx ðxÞ and E

ðTÞ
st ðxÞ

are related to SðsÞ by the set of equations (A10)–(A12). They

are presented in Appendix A 2 for the particular case of the

zero-component S
ðsÞ
0 . Generalization to all other components

is straightforward. The final expression for the Stokes vector

SðsÞ is obtained by performing two intermediate steps. The

first step involves introduction of the auxiliary vector

SðsÞðx; TÞ defined by the third equation (A12) generalized

from the S
ðsÞ
0 ðx; TÞ case to the three other components. All

of them are determined by the relations (A1) where the time

dependent electric field components of EsðtÞ are substituted

by the corresponding Fourier images of the truncated field

EðTÞs ðxÞ while time integration is omitted.

Based on the auxiliary vector SðsÞðx; TÞ, the spectral

density of the Stokes vector SðsÞðxÞ is defined by the limiting

transition T !1

S sð Þ xð Þ ¼ lim
T!1

S sð Þ x; Tð Þ
2T

: (10)

The zero-component of this vector corresponds to the power

spectrum of the scattered radiation. Finally, the full Stokes

vector SðsÞ is obtained by integrating the spectral density

SðsÞðxÞ over the spectrum of the scattered radiation

SðsÞ ¼
ðþ1
�1

SðsÞðxÞdx: (11)

The auxiliary vector SðsÞðx; TÞ is represented by quad-

ratic combinations of the Fourier images of the scattered elec-

tric field. These products are expressed in terms of the

quadratic combinations of the incident electric fields by mak-

ing use of the linear relationships EðTÞs ðxÞ ¼ f ðTÞðx; bÞP̂ � Ei

in their explicit form (9). The R.H.S. of the resulting expres-

sions contains the square of the absolute value of the function

f ðTÞðx; bÞ, quadratic combinations of the factors a, b, and c
and different quadratic combinations of the Ei components.

Expressing the products of the components of Ei in terms of

the components of SðiÞ from Equation (1) allows us to obtain

the 4� 4 auxiliary Mueller matrix M̂
ðsingleÞðx; TÞ caused by

scattering on a single electron moving with velocity b. This

matrix connects the auxiliary Stokes vector of the scattered

radiation with the Stokes vector of the incident wave

SðsÞðx; TÞ ¼ M̂
ðsingleÞðx; TÞ � SðiÞ: (12)

It is useful to present the auxiliary Mueller matrix as a prod-

uct M̂
ðsingleÞðx; TÞ ¼ CðTÞðxÞŴðbÞ, where the scalar func-

tion CðTÞðxÞ is proportional to the square of the absolute

value of the function f ðTÞðx; bÞ (A22)

C Tð Þ xð Þ ¼ r2
0 1� b2
� �

E2
0

2r2 1� bsð Þ6
2

p

sin2 x� xdð ÞT
x� xdð Þ2

" #
; (13)

while Doppler shifted frequency of the scattered radiation

xd ¼ xið1� biÞ=ð1� bsÞÞ. The 4 � 4 matrix ŴðbÞ is

expressed by quadratic combinations of the coefficients a, b,

and c

ŴðbÞ ¼
a2 þ 2b2 þ c2 a2 � c2 2bða� cÞ 0

a2 � c2 a2 � 2b2 þ c2 2bðaþ cÞ 0

2bðc� aÞ �2bðaþ cÞ 2ðac� b2Þ 0

0 0 0 2ðb2 þ acÞ

0
BB@

1
CCA: (14)

The factor E2
0 is included in (13) from expression (2) for the

Stokes vector SðiÞ of the incident wave. Correspondingly,

in all further equations SðiÞ is treated as a dimensionless

normalized vector (2) without the E2
0 factor, SðiÞ ! SðiÞ=E2

0.

The renormalized vector SðiÞ describes the dependence of the

scattered radiation on the polarization characteristics of the
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incident light determined by the orientation w and ellipticity

v angles. The factor 1/2 in (13) originates from the similar

factor in the R.H.S. of (1).

Substituting Equation (12) into (10) and performing lim-

iting transition yields the spectral density of the Stokes vec-

tor SðsÞðxÞ as a product of the spectral Mueller matrix

M̂
ðsingleÞðxÞ and SðiÞ

SðsÞðxÞ ¼ M̂
ðsingleÞðxÞ � SðiÞ: (15)

The limiting transition modifies the scalar function (13) but

does not affect Ŵ so that the spectral Mueller matrix takes a

form

M̂
singleð Þ

xð Þ ¼ C xð ÞŴ bð Þ;

C xð Þ ¼ r2
0 1� b2
� �

E2
0

2r2 1� bsð Þ6
d x� xdð Þ:

(16)

The specific form of the d-function (16) is rigorously deter-

mined by the limiting transition T !1 without the uncer-

tainty associated with the phenomenological “recipe” for

treatment of the square of a d-function (see (A13)–(A15)).

According to (11), the full Stokes vector of the scattered

radiation SðsÞ is determined by integrating SðsÞðxÞ over the

entire frequency spectrum. This yields SðsÞ as a product of

the frequency integrated Mueller matrix M̂
ðsingleÞ

and SðiÞ

SðsÞ ¼ M̂
ðsingleÞ � SðiÞ: (17)

Explicit integration over x in (16) removes the d-function

dependence in CðxÞ and yields the frequency integrated

Mueller matrix

M̂
singleð Þ ¼ CŴ bð Þ; C ¼ r2

0 1� b2
� �

E2
0

2r2 1� bsð Þ6
(18)

that describes the transformation of the Stokes vector caused

by scattering on a single electron moving with velocity b.

All three Mueller matrices describe linear connections of the

corresponding Stokes vectors of the scattered radiation with

the incident Stokes vector SðiÞ. They are almost identical in

structure with different amplitude factors CðTÞðxÞ; CðxÞ, or

C while the fundamental matrix ŴðbÞ is the same in all

cases.

The procedure of integration over the spectrum corre-

sponds to a transition from the spectrum-based characteris-

tics to the polarization analysis based on the total frequency

integrated Stokes vector spectral intensities. Integrating over

all frequencies results in an increased number of detected

photons with better statistics and accuracy of measurements.

This is a key element of the polarization-based TS diagnostic

compared to the traditional spectrum-based TS method.

Since the purpose of our work is to investigate the optimal

capabilities of depolarization diagnostics, we will focus on

the characteristics of the total scattered radiation.

The velocity b as well as the polarization parameters w,

v of the incident wave are arbitrary in Equations (17) and

(18). This allows us to test the single electron Mueller matrix

M̂
ðsingleÞ

by comparing with known solutions. One such

example is the solution to problem 6 in Sec. 78 in Ref. 16. It

represents the angular distribution of the scattering power for

a linearly polarized incident wave scattered by a charge

moving with velocity b in the direction of propagation of the

incident wave. In this particular case, the fully relativistic

acceleration is perpendicular to the velocity yielding a rela-

tively simple expression for the scattering cross-section

dr ¼ e2

mec2

� �2
1� b2
� �

1� bð Þ2

1� b sin H cos Uð Þ6

� 1� b sin H cos Uð Þ2 � 1� b2
� �

cos2H
h i

dX; (19)

where dr is the ratio of the energy scattered into the solid

angle dX per unit time to the energy flux density of the inci-

dent radiation. The propagation direction s is characterized

in Ref. 16 by the polar and azimuthal angles H;U relative to

a spherical coordinate system with z-axis along Ei and x-axis

along b. Putting v¼ 0 for a linear polarized incident wave

allows us to express the variables h and w in terms of H;U
(see (A2) and (A4))

cos h ¼ sin H cos U; cos2w ¼ sin2H sin2U

1� sin2H cos2U
(20)

and to obtain the total scattering power S
ðsÞ
0 given in (17) and

(18) in terms of the variables H and U. Calculating a, b, and

c factors in Ŵ by putting bi ¼ b; bs ¼ b cos h; bx ¼ 0 yields

S
ðsÞ
0 and the corresponding cross-section which is identical to

the solution (19) increasing confidence in correctness of

Equations (16) and (18).

All three variants of the Mueller matrix correspond to

scattering on a single electron moving with velocity v.

Scattering from a single electron changes the frequency and

polarization, but the scattered wave continues to be mono-

chromatic and, therefore, fully polarized. Correspondingly,

all Mueller matrices conserve polarization and transfer fully

polarized incident light to fully polarized scattered radiation

for an arbitrary electron velocity

S
ðsÞ
0

2 � S
ðsÞ
1

2 � S
ðsÞ
2

2 � S
ðsÞ
3

2

¼ ðb2 þ acÞ2C2ðSðiÞ0

2 � S
ðiÞ
1

2 � S
ðiÞ
2

2 � S
ðiÞ
3

2Þ ¼ 0:

III. COMBINED EFFECT OF MANY ELECTRONS

Equations (16) and (18) describe the elementary process

of scattering on an individual electron moving in unbounded

space filled with an incident homogeneous plane electromag-

netic wave of infinite extent. They are used now to account

for scattering from many electrons. We illustrate the calcula-

tions for the zero-component of the Stokes vector and justify

the approach for the three other components.

The zero-component represents the power spectrum of

the scattered radiation at the remote detector

P singleð Þ xð Þ ¼ r2
0 1� b2
� �

E2
0

2r2 1� bsð Þ6
Ŵ bð Þ � S ið Þ
� �

0
d x� xdð Þ; (21)
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where the non-zero tensor components W00, W01, and W02

are expressed in terms of a, b, and c in (14) while explicit

dependences of these factors on b are given in (9) or, equiva-

lently, in (27) and (28). Although the cross section for

Thomson scattering is small (proportional to r2
0), the inten-

sity of the scattered radiation is measurable due to the large

number of electrons N � 1 participating in scattering. The

total electric field of the scattered radiation is a sum of the

electric fields emitted by the individual electrons. The coher-

ency matrix is constructed from time-averaged quadratic

combinations of the electric field components. The products

of the field components are subdivided into two groups.

There is a large number / N2 of cross-terms originating

from the electrons characterized by different positions R
ðiÞ
0

and R
ðjÞ
0 with i 6¼ j where the vectors R

ðiÞ
0 (i ¼ 1; 2; :::N) are

introduced in (A16) and serve as labels of the unperturbed

electron trajectories. Summing over many electrons, we

assume the condition of incoherent Thomson scattering

kDjqj sin h=2� 1, where the Debye length kD represents the

mean spatial electron correlation length. The regime of inco-

herent scattering will be realized in ITER for a conventional

TS diagnostic with laser wavelength k ¼ 1lm and h ’ 130	.
Collective TS regimes with large wavelengths or small scat-

tering angles are used for measurements of the bulk and fast

ion characteristics (see a detailed review in Ref. 17). In inco-

herent regime, the cross-terms are proportional to rapidly

oscillating factors exp½�iq � ðRðiÞ0 � R
ðjÞ
0 Þ� with q ¼ ks � ki

and, therefore, vanish after summation. Then, the products of

the sum of the electric fields are reduced to the sum of the

products characterized by equal indices i¼ j. Thus, for inco-

herent TS, the Stokes vector of the scattered radiation is the

sum of the Stokes vectors of the radiation scattered by the

individual electrons. The summation of these b-dependent

quantities is equivalent to integration over dr and db in coor-

dinate and velocity space. According to the time averaging

variable t in (A1), the area of the dr-integration should corre-

spond to the summation over those electrons whose pulses of

the scattered radiation are passing through the detector at a

given time t on the detector. This determines the area of the

dr-integration over the modified scattering volume (see

Appendix B) that results in the FTT expression (24) used

below.

The equilibrium electron distribution function is defined

as the number of electrons dN ¼ nefMðbÞ db dr with veloc-

ities in the interval b, bþ db contained in a volume element

dr, where fMðbÞ is the relativistic Maxwellian distribution

function normalized to unity

fM bð Þ ¼
l exp �l=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p� �
4pK2 lð Þ 1� b2

� �5=2
; l ¼ mec2=Te; (22)

and K2ðlÞ is the modified Bessel function of the second

kind.18 We first select a group of electrons having equal

velocities b in the velocity element db but different initial

positions R0 in coordinate space. The spectral powers (21)

registered by the detector from each of these electrons are

the same (do not depend on R0). The intuitive way of

accounting for the effect of many electrons is to multiply the

power from a single electron PðsingleÞðxÞ by the total number

of electrons neVfMdb in the scattering volume V. The result-

ing total spectral power

PITT xð Þ ¼ r2
0neV 1� b2

� �
E2

0fMdb

2r2 1� bsð Þ6
Ŵ bð Þ � S ið Þ
� �

0
d x� xdð Þ

(23)

is equivalent to Equation (10) derived in the first part of Ref.

12 (Sec. II C) devoted to the infinite scattering volume or in-

finite transit time (ITT) case.

This intuitive approach can fail to accurately character-

ize the scattered power. As was pointed out by Stupakov,19 a

more consistent approach is not a summation of the instanta-

neous powers but a summation of energies emitted by the

electrons and accumulated by the detector during some time

interval long compared to the particle transit time through

the scattering volume. The problem was formally treated in

the second part of Ref. 12 (Sec. II D) devoted to the finite

scattering volume or, equivalently, to the finite transit time

(FTT) case by applying the Fourier transform in coordinate

space leading to the result

PFTT xð Þ ¼ r2
0neV 1� b2

� �
E2

0fMdb

2r2 1� bsð Þ5
Ŵ bð Þ � S ið Þ
� �

0
d x� xdð Þ:

(24)

The only difference between the ITT power spectrum

(23) and the FTT case (24) is an additional factor ð1� bsÞ in

the numerator of the FTT intensity spectrum. The FTT

weighting factor is generally accepted in all present-day rela-

tivistic treatments of Thomson scattered radiation. Some

details related to the FTT effect are briefly discussed in

Appendix B. Based on the FTT form (24), we now perform

the final stage of the summation by averaging the scattered

Stokes vector over velocities b.

IV. MUELLER MATRIX FOR INCOHERENT THOMSON
SCATTERING

A. Averaging over b with the FTT weighting factor

Averaging over velocity space is performed by integrat-

ing the Mueller matrix (18) over the relativistic Maxwellian

distribution function (22). The combined effect of many

electrons and finite size of the scattering volume are taken

into account by adding the total number of electrons in the

scattering volume N ¼ neV and the factor ð1� bsÞ to the

scattering operator. Both these factors were missed in Ref. 8.

The resulting expression has the form

M̂ l; hð Þ ¼ r2
0NE2

0

2r2

ð
1� b2
� �

fM bð Þdb

1� bsð Þ5
Ŵ bð Þ: (25)

For compact notation, it is suitable to operate with the nor-

malized dimensionless matrix m̂ðl; hÞ

m̂ðl; hÞ ¼ M̂ðl; hÞ=C0; (26)

where the factor C0 ¼ r2
0NE2

0=2r2.
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The integration (25) is performed in spherical coordi-

nates with the vz and vx axis directed along s and ex, respec-

tively, such that b ¼ ðb sin a cos /; b sin a sin /; b cos aÞ,
where a is the polar angle and / is the azimuthal angle meas-

ured from ex in the orthogonal plane. The factors a, b, and c
in expression (14) for ŴðbÞ are defined in Equation (9).

They depend on three non-orthogonal components of the

electron velocity: bi ¼ b � i; bs ¼ b � s, and bx ¼ b � ex,

where b ¼ v=c. The vector b is characterized by its spherical

coordinates, or by its Cartesian coordinates bx; by; bz. The

non-orthogonal projections can be expressed in terms of

Cartesian coordinates or, equivalently, as functions of the

polar angle a and azimuthal angle /

bx ¼ b sin a cos /; bs ¼ bz ¼ b cos a

bi ¼ by sin hþ bz cos h ¼ bðsin a sin / sin hþ cos a cos hÞ:
(27)

Substituting (27) in (9) and taking into account partial cancel-

ations in the terms proportional to ð1þ cos hÞ�1
and tanðh=2Þ

yields a, b, and c as functions of u ¼ cos h; x ¼ cos a, and /

a¼Qsin/þb2ð1�uÞð1� x2Þcos2/�ux2b2þuxbþ xb�1;

b¼Qcos/�b2ð1�uÞð1�x2Þsin/cos/;

c¼Qsin/�b2ð1�uÞð1� x2Þsin2/þðxb�1Þðu� xbÞ;
(28)

where the factor Q is introduced to combine the dependences

of a; b and c on sin a and sin h

Q ¼ bð1� xbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

: (29)

Averaging over the relativistic Maxwellian distribution

function (25) consists of three successive integrations

m̂ l; hð Þ ¼ l
4pK2 lð Þ

ð1

0

b2 exp �l=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p� �
db

1� b2
� �3=2

�
ðp

0

sin ada

1� b cos að Þ5
ð2p

0

d/Ŵ b; a;/ð Þ: (30)

Four elements of the matrix Ŵ are proportional to b / bx.

They average to zero after integration over the velocity

space. In order to prove this property, let us consider integra-

tion in Cartesian coordinates with db ¼ dbxdbydbz. From (9)

and (27), it follows that factor c does not depend on bx while

factor a is even and factor b is odd in bx. From the Mueller

matrix, it follows that the four elements W02; W12; W20; W21

are odd functions of bx. Since the Maxwellian distribution

function as well as all other weighting factors are even func-

tions of bx, these four elements cancel after averaging. The

remaining five elements are integrated according to Equation

(30). As a first step, we integrate over the azimuthal angle /

m̂
/ð Þ ¼ 1

2p

ð2p

0

d/Ŵ h; b; a;/ð Þ: (31)

The /-dependences of the matrix elements are determined

by quadratic combinations of the factors (28) and are repre-

sented by the products of different powers of the trigonomet-

ric functions sin / and cos /. Analytical integration of these

combinations over / is straightforward and leads to the fol-

lowing results:

m
/ð Þ

00 ¼ b4 3u2 � 1ð Þx4 � 2b3 uþ 1ð Þ 3u� 1ð Þx3 þ b2 1þ 2u� 3u2ð Þb2 þ 1þ 6uþ 5u2
� �

x2

�2b 2b2 1� u2ð Þ þ uþ 1ð Þ2
� �

xþ 1þ u2 þ b4 u� 1ð Þ2 þ b2 1þ 2u� 3u2ð Þ

m
/ð Þ

01 ¼ m
/ð Þ

10 ¼ 1� b2
� �

1� u2ð Þ 1� xbð Þ2

m
/ð Þ

02 ¼ m
/ð Þ

12 ¼ m
/ð Þ

20 ¼ m
/ð Þ

21 ¼ 0

m
/ð Þ

11 ¼
1

2
b4 uþ 1ð Þ2x4 � 2b3 uþ 1ð Þ2x3 þ 3b2 uþ 1ð Þ2x2 � 2b uþ 1ð Þ2xþ 1þ u2 þ 1

2
b4 u� 1ð Þ2 � b2 u� 1ð Þ2

m
/ð Þ

22 ¼
1

2
b4 uþ 1ð Þ2x4 � 2b3 uþ 1ð Þ2x3 þ 3b2 uþ 1ð Þ2x2 � 2b uþ 1ð Þ2xþ 1

2
b2 u� 1ð Þ þ 2
� �

b2 1� uð Þ þ 2u
� �

m
/ð Þ

33 ¼ b4 3u2 � 1ð Þx4 � 2b3 uþ 1ð Þ 3u� 1ð Þx3 þ b2 1þ 2u� 3u2ð Þb2 þ 1þ 6uþ 5u2
� �

x2

�2b 2b2 1� u2ð Þ þ uþ 1ð Þ2
� �

xþ 2uþ b2 1� uð Þ uþ 3ð Þ:

(32)

These expressions are quadratic polynomial functions of

u ¼ cos h, fourth degree polynomials of x ¼ cos a and do not

contain terms proportional to sin a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

and sin h.

Cancellation of the sin a and sin h terms is critical for exact an-

alytical calculations. Indeed, it is seen from (28) that these two

factors are combined in one variable Q which is multiplied by

either sin / or cos /. Forming quadratic combinations of a, b,

and c according to Equation (14) for Ŵ shows that the terms

linear in Q are proportional to the first powers of sin / or cos /
which average to zero after integration over /. This results in

polynomial functions (32) of x and u without contributions that

are linear in sin a and sin h.

Averaging the matrix elements (32) over a is equivalent

to integration over x
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m̂
að Þ ¼ 1

2

ð1

�1

dxm̂
/ð Þ x; b; uð Þ

1� bxð Þ5
: (33)

Because of polynomial dependence on x, the corresponding

integrals are of the form

In ¼
1

2

ð1

�1

xndx

1� bxð Þ5
; n ¼ 0; 1; :::; 4: (34)

They are evaluated analytically by successive integrations by

parts. The results are represented by rational functions of b
for 0 � n � 3 and by a hyperbolic arc-tangent function for

n¼ 4

I0 ¼
1þb2

1�b2
� �4

; I1 ¼
b b2þ 5
� �

3 1�b2
� �4

; I2 ¼
5b2þ 1

3 1�b2
� �4

;

I3 ¼
b 1þb2
� �
1�b2
� �4

; I4 ¼
12b6� 14b4þ 11b2� 3
� �

3b4 b2� 1
� �4

þ tanh�1 bð Þ
b5

:

(35)

Performing integration (33) over x yields

m
að Þ

00 ¼
3u2� 1ð Þtanh�1 bð Þ

b
þ 2 u� 1ð Þ b2þ 5b2� 3

� �
u� 3

� �
3 b2� 1
� �2

;

m
að Þ

01 ¼m
að Þ

01 ¼
u2� 1

b2� 1
;

m
að Þ

11 ¼
1

2

b2þ 1
� �

u� 1ð Þ2

b2� 1
� �2

þ uþ 1ð Þ2tanh�1 bð Þ
b

 !
;

m
að Þ

22 ¼
1

2

uþ 1ð Þ2tanh�1 bð Þ
b

� b2þ 1
� �

u� 1ð Þ2

b2� 1
� �2

 !
;

m
að Þ

33 ¼
3u2� 1ð Þtanh�1 bð Þ

b
þ u� 1ð Þ 5b2þ 7b2� 9

� �
u� 3

� �
3 b2� 1
� �2

:

(36)

Integration of m̂
ðaÞ

over the absolute value of the elec-

tron velocity b is performed by substituting the variable of

integration in (30), b ¼ 1� 1=c2

m l; hð Þ ¼ l
K2 lð Þ

ð1
1

dc
c

exp �lcð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
m að Þ c; uð Þ: (37)

Expressions (36) contain three different rational functions of

b proportional to ð1� b2Þ�1 ¼ c2; ð1� b2Þ�2 ¼ c4; and

b2=ð1� b2Þ2 ¼ c2ðc2 � 1Þ and the function tanh�1ðbÞ=b.

Integration of the first three combinations yieldsð1
1

dcc c2 � 1
� �1=2

exp �lcð Þ ¼
K2 lð Þ

l
;ð1

1

dcc3 c2 � 1
� �1=2

exp �lcð Þ ¼
K2 lð Þ

l
þ

3K3 lð Þ
l2

;ð1
1

dcc c2 � 1
� �3=2

exp �lcð Þ ¼
3K3 lð Þ

l2
:

(38)

They follow from the integral representation for modified

Bessel functions of the second kind KnðlÞ18

Kn lð Þ ¼
ffiffiffi
p
p

ln

2nC nþ 1

2

� �ð1
1

dc exp �lcð Þ c2 � 1
� �n�1

2: (39)

In order to transform the integrals (38) to the canonical form

(39), we regroup the terms and perform integration by parts

to get rid of powers of c in the integrands. The fourth combi-

nation with the hyperbolic arc-tangent function leads to the

following integral, which is converted to the canonical form

(39) by integration by parts:ð1
1

dc exp �lcð Þtanh�1 bð Þ ¼ 1

l

ð1
1

dc exp �lcð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p ¼
K0 lð Þ

l
;

(40)

where the derivatives resulting from integration by parts are

as follows: dtanh�1ðbÞ=db ¼ c2 and db=dc ¼ c�2ðc2

�1Þ�1=2
. Expressions (38) and (40) contain four different

modified Bessel functions. They are reduced to two functions

K1;2ðlÞ by making use of the recurrence relations,18

K0ðlÞ ¼ K2ðlÞ � 2K1ðlÞ=l; K3ðlÞ ¼ K1ðlÞ þ 4K2ðlÞ=l.

Evaluating integral (37) with the use of these relation-

ships gives the final presentation for the elements of the

Mueller m̂ðl; hÞ. All integrations are performed in analytical

form yielding functions of the scattering angle, u ¼ cos h,

and electron temperature via the factor l2 and function

GðlÞ ¼ K1ðlÞ=ðlK2ðlÞÞ, where K1 and K2 are modified

Bessel functions of the second kind

m00 ¼ 1þ u2 � 2GðlÞðu2 þ 4u� 3Þ þ ð16=l2Þð1� uÞ2;
m01 ¼ m10 ¼ 1� u2;

m11 ¼ 1þ u2 þ 2GðlÞðu2 � 4uþ 1Þ þ ð12=l2Þð1� uÞ2;
m22 ¼ 2u� 4GðlÞðu2 � uþ 1Þ � ð12=l2Þð1� uÞ2;
m33 ¼ 2u� 4GðlÞuð2u� 1Þ � ð8=l2Þð1� uÞ2:

(41)

The matrix elements (41) present an exact analytical so-

lution for the state of polarization of incoherent Thomson

scattering radiation. In contrast to Ref. 8 where only the low-

est order linear in Te analytical results were obtained on the

basis of the incorrect ITT weighting factor, expressions (41)

are valid for the full range of scattering angles and electron

thermal motion from non-relativistic to ultra-relativistic. The

first terms in (41) describe the change of polarization in cold

plasma (l!1), the second terms yield first order correc-

tions in the weakly relativistic limit at l� 1, and the third

terms dominate at ultra-relativistic temperatures l� 1.

The Mueller matrix m̂ðl; hÞ does not conserve polariza-

tion and transfers fully polarized incident light to partially

polarized scattered radiation. This property is intrinsically

connected with the broadening of the scattered spectrum,

which by definition is no longer fully polarized. The degree

of polarization P is defined in Equation (3). It is a ratio of

power flux in the polarized component to the total power

flux. Since P is a ratio of two fluxes, the normalization factor

C0 cancels in the final expression for P. Thus, the degree of

polarization/depolarization is completely determined by the

elements of the matrix m̂ðl; hÞ and the Stokes vector of the
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incident radiation SðiÞðw; vÞ. It depends on the characteristics

of the incident light w and v, electron temperature Te ¼
mec2=l and the scattering angle h. Detailed information

about the properties of this function of four variables is pre-

sented in Ref. 10.

B. Mueller matrix averaged over b with the ITT
weighting factor

The above results are obtained by averaging with the

weighting factor / ð1� b2Þ=ð1� bsÞ5. The technique of an-

alytical integration over b can also be applied to the ITT

weighting factor treated in Ref. 8. This also yields Mueller

matrix elements valid at all temperatures. Although the sixth

power scaling seems to be irrelevant for TS applications, it is

useful for the purpose of comparison to illustrate the impor-

tance of the specific form of the weighting factor. The sixth

power weighting factor is expressed by the Mueller matrix

Ĥðl; hÞ ¼ C0ĥðl; hÞ (42)

defined by the integral (25) with the factor ð1� bsÞ6 in the

denominator. The results of exact calculation of the matrix ĥ

are given in Equation (B1) in Appendix B. Comparison of

the two Mueller matrices m̂ and ĥ reveals essential differen-

ces. For example, the off-diagonal elements m01 ¼ m10 do

not depend on electron temperature while the same elements

of the matrix ĥ are substantial functions of Te. The tempera-

ture independence of the off-diagonal elements m01 ¼ m10 is

a unique consequence of the fifth power weighting factor.

The same integration performed for any other weighting fac-

tor results in temperature dependent off-diagonal elements.

A good test of the exact analytical calculations is com-

parison with the first-order expansions in Te presented in

Equation (44) in Ref. 8. Similar approximation can be

obtained from the exact matrix Ĥðl; hÞ by Taylor expansion

of the matrix element (B1) in powers of small electron tem-

perature Te=mec2 ¼ 1=l� 1 (l!1). Ignoring small

terms proportional to l�2 and l�4 and taking into account

that GðlÞ ! 1=l ¼ Te=mec2 yields the first order correction

in Te to the cold plasma Mueller matrix. Comparing this cor-

rection with expressions (44) in Ref. 8 at b2 ¼ 3Te=mec2

shows that our results are identical. This verifies the first-

order expansions in Te obtained in Ref. 8 for the ITT model

and increases confidence in the correctness of our exact ana-

lytical scheme of integration.

V. SUMMARY AND FUTURE WORK

The classical problem of depolarization of incoherent

Thomson scattered radiation is analytically solved, for the

first time, without any approximations. Special attention is

paid to justification of the fifth power weighting factor for

averaging over the relativistic Maxwellian distribution func-

tion. The exponent of the function ð1� bsÞ is important for

exact relativistic calculations. This is illustrated by compari-

son with the case of sixth power weighting factor considered

in Ref. 8.

The Mueller matrix averaged over electron thermal

motion does not conserve polarization and transfers fully

polarized incident light to partially polarized scattered radia-

tion. This property is intrinsically connected with the broad-

ening of the scattered spectrum, which, by definition, is

no longer fully polarized. If the degree of polarization

dependence on electron temperature is accurately known

from theory, the accuracy of such a diagnostic could poten-

tially exceed that of the conventional spectrum-based TS

method. Since the scattered spectra are broad for fusion-

grade plasmas, all results for the degree of polarization are

obtained for the frequency integrated components of the

Stokes vector SðsÞ. Integrating over the spectrum results in an

increased number of detected photons with better statistics

and measurements accuracy. This is a key element of the

polarization-based TS diagnostic compared to the traditional

spectrum-based TS method.

The degree of polarization P depends on Te, the scatter-

ing angle h, and the polarization characteristics of the inci-

dent light w and v. In spite of the large number of variables

and complexity of the dependencies, the exact analytical

results allow us to describe rigorously in a compact form the

general properties of the degree of polarization (see Ref. 10).

At given h and Te, extrema of P as a function of w and v are

reached at the boundaries of the region 0 � w � p=2; 0

� v � p=4. This yields the absolute maximum PmaxðTe; hÞ,
and minimum PminðTe; hÞ, with respect to all possible polar-

ization states of the incident radiation, and allows us to set

upper and lower limits on P at a given h and Te. A good test

of the correctness of the matrix elements m̂ is that P< 1 for

all values of the variables. These results are directly used for

optimization of the polarization-based TS method of electron

temperature measurement in Ref. 11.

For LIDAR TS systems with backscattered detectors at

h 
 180	, the theoretical model predicts a maximum of

depolarization, D ¼ 1� P, of order 3%� 8% for a circu-

larly polarized laser beam. Because of the quadratic depend-

ence on Te=mec2, the effect is about five times smaller than

for perpendicular scattering and is, therefore, difficult to

exploit for Te determination in LIDAR. For a conventional

TS system with h ’ 90	, the situation is much more favor-

able with average D 
 20%� 25%. The absolute maximum

Dmax 
 95% is reached at w ¼ 90	 for elliptically polarized

incident light. This extreme regime corresponds to very

small scattered power and results in large error bars for

polarization-based Te measurements. More practical cases

with circular and linear incident polarizations are analyzed

in Refs. 10 and 11 for conventional TS diagnostics.

Although circular incident polarization yields stronger depo-

larization of scattered radiation, rigorous minimization of the

error bars shows that linear incident polarization is preferen-

tial for polarization-based diagnostics.

Realistic experimental constraints require detecting scat-

tered photons within a limited wavelength range. This necessi-

tates understanding the frequency resolved degree of

polarization.8 Publications devoted to the rigorous analysis of

the spectral polarization concept are not available in the litera-

ture. Some empirical steps in this direction can be made on the

basis of Equation (11). Let us consider a partial contribution

DSðsÞ to the spectrum integrated Stokes vector from a narrow

frequency interval Dx, such that DSðsÞ ¼ SðsÞðxÞDx. Formal
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substitution of DSðsÞ to the equation for the degree of polariza-

tion (3) yields an expression for PðxÞ which is determined by

the spectral density SðsÞðxÞ and does not depended on Dx

P xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

sð Þ
1

2
xð Þ þ S

sð Þ
2

2
xð Þ þ S

sð Þ
3

2
xð Þ

q
S

sð Þ
0 xð Þ

: (43)

The Stokes vector components SðsÞðxÞ are determined by the

single electron spectral Mueller matrix (16) averaged over

the relativistic Maxwellian distribution function with the

weighting factor (25) and d-function spectral dependence

M̂ x; l; hð Þ ¼ r2
0neVE2

0

2r2

ð
1� b2
� �

fM bð Þdb

1� bsð Þ5
Ŵ bð Þd x� xdð Þ:

(44)

To evaluate the feasibility of frequency resolved TS polarim-

etry, an expression similar to (44) but with the sixth power

weighting factor was suggested without derivation in Ref. 8.

The specific values of the spectral Stokes vector compo-

nents, SðsÞðxÞ ¼ M̂ðx; l; hÞ � SðiÞðv;wÞ, are functions of five

variables and require numerical integration that is beyond

the analytical scope of this paper. First numerical results and

experimental applications are discussed by Giudicotti et al.
in Ref. 22. They extensively benchmark their code by com-

puting the frequency resolved Mueller matrix elements, inte-

grating them over the spectrum and comparing with the

frequency integrated analytical results (41). Good consis-

tency between frequency integrated numerical values and an-

alytical predictions is reported in the paper. Thus, the exact

relativistic expressions (41) can be used as a reliable tool for

benchmarking and verification of numerical codes for fre-

quency resolved TS polarization.

For conventional degree of polarization analysis (3), rigor-

ous proof that P � 1 is provided by Schwarz’s inequality

applied for the time averaged elements of the polarization

matrix (1). A similar mathematical analysis and proof that

PðxÞ � 1 should be performed for the frequency-resolved

degree of polarization (43). Note particularly that the spectral

degree of polarization (43) does not depend on the width of the

frequency interval Dx. Choosing a very narrow frequency

interval leads to the limiting transition of a pure monochromatic

electromagnetic wave which, by definition (see, for example,

Ref. 16), is fully polarized with PðxÞ ! 1. Some restriction on

the minimal value of Dx or the conditions of applicability of

PðxÞ may be required to avoid an inconsistency. Analysis of

this question should be a subject of future work.
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APPENDIX A: SCATTERING BY SINGLE ELECTRON

1. Stokes vector components

The Stokes parameters of the incident and scattered radia-

tion are defined by time-averaged electric field components (1)

S0 ¼ lim
T!1

1

2T

ðT

�T

Ex tð ÞE�x tð Þ þ Et tð ÞE�t tð Þ
� �

dt;

S1 ¼ lim
T!1

1

2T

ðT

�T

Ex tð ÞE�x tð Þ � Et tð ÞE�t tð Þ
� �

dt;

S2 ¼ lim
T!1

1

2T

ðT

�T

Ex tð ÞE�t tð Þ þ Et tð ÞE�x tð Þ
� �

dt;

S3 ¼ lim
T!1

i

2T

ðT

�T

Ex tð ÞE�t tð Þ � Et tð ÞE�x tð Þ
� �

dt:

(A1)

They are determined by the projections of EðtÞ onto the

(ex; ti) and (ex; ts) axes, respectively (see Equation (4)).

Consider, for example, the Stokes vector SðiÞ of the incident

monochromatic wave (5)

Ei ¼ Eixex þ Eitti ¼ E0 e0x cos vþ ie0y sin v
� �

; (A2)

where the ellipticity angle v ¼ 6arctanðb2=b1Þ. The two

mutually perpendicular unit vectors e0x and e0y are orthogonal

to the incident wave propagation direction i. Their position

with respect to the scattering plane is determined by the azi-

muth (orientation angle) w of the polarization ellipse

(cos w ¼ ex � e0x). Projecting (A2) onto the ex and ti axes

gives the Eix and Eit components

Eix ¼ cos v cos w� i sin v sin w;

Eit ¼ cos v sin wþ i sin v cos w:
(A3)

Substituting (A3) in (A1) yields the Stokes vector of the fully

polarized incident wave (2).

The particular case of a linearly polarized incident wave

with v¼ 0 is considered in solution (19). The corresponding

electric field amplitude Ei k e0x. The scattered wave propaga-

tion direction s is characterized in solution (19) by the polar

and azimuth angles H and U. They are defined with respect

to the spherical system of coordinates determined by the unit

vectors x̂ ¼ i; ŷ ¼ e0x � i; ẑ ¼ e0x. The relationships between

the variables h and w and the angles H and U are as follows:

cos h ¼ s � i ¼ s � x̂ ¼ sin H cos U;

cos w ¼ e0x � ex ¼ ẑ � ½i� s�= sin h ¼ ðs � ŷÞ= sin h

¼ sin H sin U= sin h:

(A4)

2. Spectral characteristics of the truncated fields

An infinitely long wave packet of incident monochro-

matic radiation (5) is characterized by a non-zero electric

field from �1 � t � 1. The quadratic combinations of the
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scattered electric field (A1) are nonvanishing functions of

time, while the Fourier expansion is formally valid only for

functions decaying sufficiently fast at infinity (square inte-

grable). In order to apply the Fourier transform to stationary

scattered radiation, the method of truncated functions15 is

used

EðTÞs ðtÞ ¼
EsðtÞ jtj � T
0 jtj � T

;

	
(A5)

where t is the time at the remote detector (time-at-observer).

We perform all intermediate calculations at finite T with the

limiting transition in the final expressions.

The truncated signals are square integrable with the

Fourier transform

E Tð Þ
s xð Þ ¼ 1ffiffiffiffiffiffi

2p
p

ðT

�T

Es tð Þexp ixtð Þdt: (A6)

Consider a monochromatic dependence EsðtÞ ¼ E0 expð�ixdtÞ
with Doppler shifted frequency xd ¼ xið1� biÞ=ð1� bsÞÞ
caused by Thomson scattering on a single electron with velocity

v. The Fourier image of the truncated field

E Tð Þ
s xð Þ ¼ E0

ffiffiffi
2

p

r
sin x� xdð ÞT

 �
x� xd

(A7)

depends on x and the truncation variable T. This is a smooth

analytical function of x at finite T and a singular d-function

at T !1

lim
T!1

EðTÞs ¼ EsðxÞ ¼ E0

ffiffiffiffiffiffi
2p
p

dðx� xdÞ: (A8)

For the general case of arbitrary time dependence, the

truncated field is expressed by the inverse Fourier integral

E Tð Þ
s tð Þ ¼ 1ffiffiffiffiffiffi

2p
p

ð1
�1

E Tð Þ
s xð Þexp �ixtð Þdx: (A9)

The time averaged quadratic combinations (A1) are

expressed by double integrals over the frequencies x1 and

x2. Consider, for example, the S
ðsÞ
0 component

S
sð Þ

0 ¼ lim
T!1

1

2T

ðT

�T

Esx tð ÞE?sx tð Þ þ Est tð ÞE?st tð Þ
� �

dt

¼ lim
T!1

1

2pT
�
ðþ1
�1

dx1

ðþ1
�1

dx2 E Tð Þ
sx x1ð ÞE Tð Þ

sx
? x2ð Þ

�

þ E Tð Þ
st x1ð ÞE Tð Þ

st
? x2ð Þ

� sin x2 � x1ð ÞT

 �
x2 � x1

:

(A10)

At sufficiently large T, the integral kernel is approximated by

the d-function

sin x2 � x1ð ÞT

 �
x2 � x1

!
T!1

pd x2 � x1ð Þ: (A11)

Performing integration over x1 or x2, the time averaged

quadratic combinations take the form of an integral over the

spectrum

S
sð Þ

0 ¼
ðþ1
�1

dxS0 xð Þ; S0 xð Þ ¼ lim
T!1

S
sð Þ

0 x; Tð Þ
2T

;

S
sð Þ

0 x; Tð Þ ¼ E Tð Þ
sx xð ÞE Tð Þ

sx
? xð Þ þ E Tð Þ

st xð ÞE Tð Þ
st

? xð Þ:
(A12)

These transformations are equivalent to Parseval’s theorem

for spectral intensities. Using (A1), expression (A12) is gen-

eralized to the three other components of the Stokes vector

in the form (11).

Specifying the dependence on T in the quadratic combi-

nations (A12) allows us to perform the limiting transition

T !1 without uncertainties caused by the treatment of the

square of a d-function. Then, the expression for S
ðsÞ
0 ðxÞ takes

a form

S
sð Þ

0 xð Þ ¼ lim
T!1

jE0j2

pT

sin2 x� xdð ÞT

 �
x� xdð Þ2

: (A13)

This function tends to zero at x 6¼ xd and to infinity at

x ¼ xd , showing properties of the delta-function of x.

Exact integration over x yieldsðþ1
�1

S0ðxÞdx ¼ jE0j2; (A14)

indicating that

S
ðsÞ
0 ðxÞ ¼ jE0j2dðx� xdÞ: (A15)

3. Amplitude of the Thomson scattered field

Based on the truncation method, we calculate now the

amplitude for the Thomson scattered field. The starting point

is the Lienard-Wiechert expression for the scattered electric

field Es emitted by an electron moving along the unperturbed

trajectory

Rðt0Þ ¼ R0 þ vt0 (A16)

and oscillating in the field (5) of the incident monochromatic

wave Eiðr0; t0Þ

Es r; tð Þ ¼
r0

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
1� bsð Þ2

ð
dr0
ð

dt0d t0 � tþ r � s � r0ð Þ=c

 �

� d r0 � R t0ð Þð ÞP̂ � Ei r0; t0ð Þ:
(A17)

Note that we consider here an elementary process of

scattering within the scope of the infinite scattering volume

model treated in Secs. II A–II C of Ref. 12. The tensor P̂
describes the transformation of polarization in the process of

scattering on a single electron

P̂ � Ei ¼ �ð1� bsÞð1� biÞEi þ ½bEðcos h� bsÞ
þ ð1� biÞðs � EiÞ�s þ ½bEð1� cos hÞ
� ð1� biÞðs � EiÞ�b� bEð1� bsÞi; (A18)
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where bE ¼ b � Ei. Equations (A17) and (A18) are also iden-

tical to the set of initial equations in Ref. 13.

The electric field Esðr; tÞ represents the scattered field at

the remote position r on the detector at time t. We truncate

the field Esðr; tÞ within a time interval jtj � T according to

(A5). The Fourier image of the truncated signal is obtained

by integrating over t from � T to T

E Tð Þ
s xð Þ ¼ 1ffiffiffiffiffiffi

2p
p r0

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
1� bsð Þ2

ð
dr0
ð

dt0d r0 � R t0ð Þ½ �

� P̂ � Ei r0; t0ð Þ
ðT

�T

d t0 � tþ r � s � r0ð Þ=c

 �

� exp ixtð Þ�dt;

(A19)

where unperturbed electron trajectories (A16) are used

for integration. When t varies from � T to T, the d-function

contributes to the integral if the retarded time t0 is in the

range �T=ð1� bsÞ � tr < t0 < T=ð1� bsÞ � tr, where tr ¼
ðr � s � R0Þ=cð1� bsÞ is the time shift due to the retardation

and bs ¼ s � v=c. In the exponential factor, t is expressed in

terms of t0 by equating to zero the argument of the d-func-

tion. This determines the resulting integral over t0

E Tð Þ
s xð Þ ¼ 1ffiffiffiffiffiffi

2p
p r0

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
1� bsð Þ2

ð
dr0
ðT= 1�bsð Þ�tr

�T= 1�bsð Þ�tr

dt0

� d r0 � R0 � vt0½ �P̂ � Ei r0; t0ð Þ
� exp ix 1� bsð Þt0 þ ix r � s � R0ð Þ=c


 �
:

(A20)

Using the explicit expression (5) for Eiðr0; t0Þ allows us to

rewrite the integral over t0 as follows:

E Tð Þ
s xð Þ ¼ exp ixdr=c� i ks� kið Þ �R0ð Þ P̂ �Eiffiffiffiffiffiffi

2p
p r0

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
1� bsð Þ2

�
ðT= 1�bsð Þ

�T= 1�bsð Þ
dt0 exp i x�xið Þt0 � i xs�xiið Þ � bt0


 �
;

(A21)

where the new shifted time variable, t0 ! t0 þ tr, is used for

integration while xd ¼ xið1� biÞ=ð1� bsÞ is the Doppler

shifted frequency and ks ¼ xds=c is the wave vector of the

scattered radiation. Performing integration over t0 yields the

final result in the form (8)

EðTÞs ðxÞ ¼ f ðTÞðx; bÞP̂ � Ei;

where the scalar function f ðTÞðx; bÞ

f Tð Þ x; bð Þ ¼ exp ixdr=c� i ks � kið Þ � R0ð Þ r0

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
1� bsð Þ3

�
ffiffiffi
2

p

r
sin XTð Þ

X
; X ¼ x� xd (A22)

is introduced for compact notation to describe the spectral char-

acteristics and the dependences on r and b. In the limiting case

T !1, the dependence on x is expressed by the d-function

Es xð Þ ¼
ffiffiffiffiffiffi
2p
p

exp ixdr=c� i ks � kið Þ � R0ð Þ r0

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
1� bsð Þ3

� P̂ � Eid x� xdð Þ: (A23)

In this form, the result (A23) is consistent with Eq. (7) in

Ref. 12.

The change of polarization is described by the polariza-

tion operator P̂ � Ei given in (A18). Taking two orthogonal

projections, the connection between the components of the

scattered and incident electric fields is expressed by a 2 � 2

matrix (9). The matrix is obtained by projecting the scattered

field on the ex and ts directions while the amplitude of the

incident field Ei is projected on the ex and ti directions

defined in (4). Then, the ex component of the scattered elec-

tric field takes a form

EsxðxÞ=f ðTÞðx; bÞ ¼ �ð1� bsÞð1� biÞEix þ ½bEð1� cos hÞ
þ sin hð1� biÞEit�bx; (A24)

while the ts component is as follows:

EstðxÞ=f ðTÞðx; bÞ ¼ �cos hð1� bsÞð1� biÞEit

þðbEð1� cos hÞ þ sin hð1� biÞEitÞbts

� sin hbEð1� bsÞ: (A25)

The velocity components bE, bti, and bts appearing in these

relations are expressed in terms of bi and bs

bE ¼ bxEix þ btiEit; bti ¼ b � ti ¼
bi cos h� bs

sin h
;

bts ¼ b � ts ¼
bi � bs cos h

sin h
: (A26)

Combining Equations (A24)–(A26) yields the matrix in

Equation (9).

APPENDIX B: INFINITE (ITT) AND FINITE (FTT)
TRANSIT TIME CASES

The scattering volume is defined by the intersection of

the region occupied by the laser beam and the region of ob-

servation determined by the collection optics. The distortion

of the signal caused by the finite size L of the scattering vol-

ume has a twofold effect. First, it broadens the spectrum (21)

to the finite width dx=x ’ vTe=ðxLÞ. The transit time broad-

ening is much less than the expected thermal broadening in

any high-temperature plasmas1,12,14 and, therefore, ignored

in our calculations. The second effect is less obvious and

impacts the amplitude of the spectrum rather than its shape.

It results in an additional factor ð1� bsÞ in the numerator of

the FTT intensity spectrum (24) compared to the ITT power

spectrum (23). A quantitative physical picture of the FTT

effect and origination of the additional factor were explained

in Sec. III of Ref. 12 based on a single-bounded particle

model for mean spectral intensity.

Revisiting this problem we developed a more intuitive

picture of the nature of the FTT effect. It is based on consid-

eration of a large number of electrons of a given velocity b
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crossing the scattering volume, visualization of the positions

of the electromagnetic pulses emitted by the individual elec-

trons, and counting the number of pulses passing through the

remote detector at given time t on the detector. This geomet-

rical picture shows that due to the combined effect of the

retardation and electron motion, the number of pulses instan-

taneously passing through the remote detector is not equal to

the stationary number of electrons residing in the scattering

volume V, but to the number of electrons inside the modified

volume ð1� bsÞV. This justifies the use of the fifth power

weighting factor for averaging not only the spectral intensity

but also all components of the Stokes vector.

The appearance of the factor ð1� bsÞ can also be inter-

preted in a different way: if the radiating particles are in a

bounded volume the radiation intensity at the remote detec-

tor is determined not only by the single particle time-at-ob-
server power PðsingleÞ but also by the time-at-particle power

PðparticleÞ ¼ ð1� bsÞPðsingleÞ multiplied by the number of

emitters inside the scattering volume V. For synchrotron

radiation, the conclusion in this form was, for the first time,

made in Ref. 20. A similar, but more succinct analysis of

synchrotron radiation was presented, approximately at the

same time, in Ref. 21. The analogy with synchrotron radia-

tion was used in Ref. 2 to explain the need for the additional

factor ð1� bsÞ to account for the combined effect of many

electrons.

1. Mueller matrix for averaging with the ITT weighting
factor

The results presented in Sec. IV are obtained by aver-

aging with the FTT weighting factor / ð1� b2Þ=ð1� bsÞ5
that follows from Equation (25). To illustrate the impor-

tance of the specific form of the weighting factor, we apply

the technique described in Sec. IV to the case of the

weighting factor / ð1� b2Þ=ð1� bsÞ6 that was used in

Ref. 8 for calculations to the lowest linear order in

Te=mec2 � 1. The analytical results for the sixth power

weighting factor are represented by the Mueller matrix ĥ

defined in Equation (42)

h00 ¼ 1þ u2 þ 2G lð Þ 5� 6uþ u2 þ 84 1� uð Þ2

l2

 !
þ 4 17� 9uð Þ 1� uð Þ

l2
þ 672 1� uð Þ2

l4
;

h01 ¼ h10 ¼ 1� u2ð Þ 1þ 4G lð Þ þ
16

l2

� �
;

h11 ¼ 1þ u2 þ 6 1þ 24

l2

� �
1� uð Þ2G lð Þ þ

48 1� uð Þ2

l2
þ 576 1� uð Þ2

l4
;

h22 ¼ �2u� 6 1þ 24

l2

� �
u� 1ð Þ2G lð Þ �

576 u� 1ð Þ2

l4
� 48 u� 1ð Þ2

l2
;

h33 ¼ 2u� 2G lð Þ 1� 6uþ 5u2 þ 60 1� uð Þ2

l2

 !
þ 4 7� 15uð Þ 1� uð Þ

l2
þ 480 1� uð Þ2

l4
:

(B1)

Comparing the two Mueller matrices m̂ and ĥ shows that

they are very sensitive to the specific form of the weighting

factor. For example, the off-diagonal elements m01 ¼ m10 ¼
sin2h are always the same as in cold plasma while the equiva-

lent elements of the matrix ĥ are substantial functions of elec-

tron temperature. While the specific form of the weighting

factor is not important for the first integration over /, it

becomes critical at the second integration over a in Equation

(33). Indeed, integrating the element m
ð/Þ
01 given in Equation

(32) over x with the fifth power weighting factor leads to can-

cellation of the 1� b2 terms in the numerator and denomina-

tor of the resulting expression. This corresponds to

temperature independent off-diagonal elements m01 ¼ m10.
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